Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3129, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605050

RESUMO

The essence of difference between hemostasis and thrombosis is that the clotting reaction is a highly fine-tuned process. Vascular protein disulfide isomerase (PDI) represents a critical mechanism regulating the functions of hemostatic proteins. Herein we show that histidine-rich glycoprotein (HRG) is a substrate of PDI. Reduction of HRG by PDI enhances the procoagulant and anticoagulant activities of HRG by neutralization of endothelial heparan sulfate (HS) and inhibition of factor XII (FXIIa) activity, respectively. Murine HRG deficiency (Hrg-/-) leads to delayed onset but enhanced formation of thrombus compared to WT. However, in the combined FXII deficiency (F12-/-) and HRG deficiency (by siRNA or Hrg-/-), there is further thrombosis reduction compared to F12-/- alone, confirming HRG's procoagulant activity independent of FXIIa. Mutation of target disulfides of PDI leads to a gain-of-function mutant of HRG that promotes its activities during coagulation. Thus, PDI-HRG pathway fine-tunes thrombosis by promoting its rapid initiation via neutralization of HS and preventing excessive propagation via inhibition of FXIIa.


Assuntos
Isomerases de Dissulfetos de Proteínas , Trombose , Animais , Camundongos , Isomerases de Dissulfetos de Proteínas/genética , Dissulfetos , Proteínas/metabolismo , Trombose/genética , Trombose/metabolismo , Heparitina Sulfato , Fator XII/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 43(6): 1015-1030, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37051931

RESUMO

BACKGROUND: AGK (acylglycerol kinase) was first identified as a mitochondrial transmembrane protein that exhibits a lipid kinase function. Recent studies have established that AGK promotes cancer growth and metastasis, enhances glycolytic metabolism and function fitness of CD8+ T cells, or regulates megakaryocyte differentiation. However, the role of AGK in platelet activation and arterial thrombosis remains to be elaborated. METHODS: We performed hematologic analysis using automated hematology analyzer and investigated platelets morphology by transmission electron microscope. We explored the role of AGK in platelet activation and arterial thrombosis utilizing transgenic mice, platelet functional experiments in vitro, and thrombosis models in vivo. We revealed the regulation effect of AGK on Talin-1 by coimmunoprecipitation, mass spectrometry, immunofluorescence, and Western blot. We tested the role of AGK on lipid synthesis of phosphatidic acid/lysophosphatidic acid and thrombin generation by specific Elisa kits. RESULTS: In this study, we found that AGK depletion or AGK mutation had no effect on the platelet average volumes, the platelet microstructures, or the expression levels of the major platelet membrane receptors. However, AGK deficiency or AGK mutation conspicuously decreased multiple aspects of platelet activation, including agonists-induced platelet aggregation, granules secretion, JON/A binding, spreading on Fg (fibrinogen), and clot retraction. AGK deficiency or AGK mutation also obviously delayed arterial thrombus formation but had no effect on tail bleeding time and platelet procoagulant function. Mechanistic investigation revealed that AGK may promote Talin-1Ser425 phosphorylation and affect the αIIbß3-mediated bidirectional signaling pathway. However, AGK does not affect lipid synthesis of phosphatidic acid/lysophosphatidic acid in platelets. CONCLUSIONS: AGK, through its kinase activity, potentiates platelet activation and arterial thrombosis by promoting Talin-1 Ser425 phosphorylation and affecting the αIIbß3-mediated bidirectional signaling pathway.


Assuntos
Talina , Trombose , Animais , Camundongos , Plaquetas/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Camundongos Transgênicos , Ácidos Fosfatídicos/metabolismo , Ácidos Fosfatídicos/farmacologia , Ativação Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transdução de Sinais , Talina/genética , Talina/metabolismo , Talina/farmacologia , Trombose/patologia
3.
J Am Chem Soc ; 145(5): 3196-3203, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36696679

RESUMO

Extracellular protein disulfide isomerase (PDI) is a promising target for thrombotic-related diseases. Four potent PDI inhibitors with unprecedented chemical architectures, piericones A-D (1-4), were isolated from Pieris japonica. Their structures were elucidated by spectroscopic data analysis, chemical methods, quantum 13C nuclear magnetic resonance DP4+ and electronic circular dichroism calculations, and single-crystal X-ray diffraction analysis. Piericones A (1) and B (2) were nanomolar noncompetitive PDI inhibitors possessing an unprecedented 3,6,10,15-tetraoxatetracyclo[7.6.0.04,9.01,12]pentadecane motif with nine contiguous stereogenic centers. Their biosynthetic pathways were proposed to include a key intermolecular aldol reaction and an intramolecular 1,2-migration reaction. Piericone A (1) significantly inhibited in vitro platelet aggregation and fibrin formation and in vivo thrombus formation via the inhibition of extracellular PDI without increasing the bleeding risk. The molecular docking and dynamics simulation of 1 and 2 provided a novel structure basis to develop PDI inhibitors as potent antithrombotics.


Assuntos
Isomerases de Dissulfetos de Proteínas , Trombose , Humanos , Isomerases de Dissulfetos de Proteínas/química , Plaquetas/metabolismo , Fibrinolíticos/metabolismo , Simulação de Acoplamento Molecular , Trombose/metabolismo
4.
Br J Pharmacol ; 180(3): 287-307, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36166754

RESUMO

BACKGROUND AND PURPOSE: Thrombosis is a major cause of morbidity and mortality worldwide. Platelet activation by exposed collagen through glycoprotein VI (GPVI) and formation of neutrophil extracellular traps (NETs) are critical pathogenic factors for arterial and venous thrombosis. Both events are regulated by spleen tyrosine kinase (Syk)-mediated signalling events. Asebogenin is a dihydrochalcone whose pharmacological effects remain largely unknown. This study aims to investigate the antithrombotic effects of asebogenin and the underlying molecular mechanisms. EXPERIMENTAL APPROACH: Platelet aggregation was assessed using an aggregometer. Platelet P-selectin exposure, integrin activation and calcium mobilization were determined by flow cytometry. NETs formation was assessed by SYTOX Green staining and immunohistochemistry. Quantitative phosphoproteomics, microscale thermophoresis, in vitro kinase assay and molecular docking combined with dynamics simulation were performed to characterize the targets of asebogenin. The in vivo effects of asebogenin on arterial thrombosis were investigated using FeCl3 -induced and laser-induced injury models, whereas those of venous thrombosis were induced by stenosis of the inferior vena cava. KEY RESULTS: Asebogenin inhibited a series of GPVI-induced platelet responses and suppressed NETs formation induced by proinflammatory stimuli. Mechanistically, asebogenin directly interfered with the phosphorylation of Syk at Tyr525/526, which is important for its activation. Further, asebogenin suppressed arterial thrombosis demonstrated by decreased platelet accumulation and fibrin generation and attenuated venous thrombosis determined by reduced neutrophil accumulation and NETs formation, without increasing bleeding risk. CONCLUSION AND IMPLICATIONS: Asebogenin exhibits potent antithrombotic effects by targeting Syk and is a potential lead compound for the development of efficient and safe antithrombotic agents.


Assuntos
Fibrinolíticos , Trombose , Humanos , Fosforilação , Fibrinolíticos/farmacologia , Simulação de Acoplamento Molecular , Agregação Plaquetária , Ativação Plaquetária , Plaquetas , Trombose/tratamento farmacológico , Trombose/metabolismo , Quinase Syk/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo
5.
Pharmacol Res ; 167: 105540, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33711433

RESUMO

Classical antithrombotics and antiplatelets are associated with high frequencies of bleeding complications or treatment failure when used as single agents. The platelet-independent fibrin generation by activated endothelium highlights the importance of vascular protection in addition to platelet inhibition in thrombosis prevention. Dihydromyricetin (DHM), the most abundant flavonoid in Ampelopsis grossedentata, has unique vasoprotective effects. This study aims to characterize the antithrombotic potential of DHM. The effects of DHM on the activation of platelets and endothelial cells were evaluated in vitro. Calcium mobilization and activation of mitogen-activated protein kinases (MAPKs) were examined as the potential targets of DHM based on molecular docking analysis. The in vivo effects of DHM were determined in FeCl3-injured carotid arteries and laser-injured cremasteric arterioles. The results showed that DHM suppressed a range of platelet responses including aggregation, secretion, adhesion, spreading and integrin activation, and inhibited exocytosis, phosphatidylserine exposure and tissue factor expression in activated endothelial cells. Mechanistically, DHM attenuated thrombin-induced calcium mobilization and phosphorylation of ERK1/2 and p38 both in platelets and endothelial cells. Intravenous treatment with DHM delayed FeCl3-induced carotid arterial thrombosis. Furthermore, DHM treatment inhibited both platelet accumulation and fibrin generation in the presence or absence of eptifibatide in the laser injury-induced thrombosis model, without prolonging ex vivo plasma coagulation or tail bleeding time. DHM represents a novel antithrombotic agent whose effects involve both inhibition of platelet activation and reduction of fibrin generation as a result of endothelial protection.


Assuntos
Células Endoteliais/efeitos dos fármacos , Fibrinolíticos/farmacologia , Flavonóis/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Trombose/tratamento farmacológico , Animais , Células Endoteliais/patologia , Feminino , Fibrinolíticos/uso terapêutico , Flavonóis/uso terapêutico , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Endogâmicos C57BL , Inibidores da Agregação Plaquetária/uso terapêutico , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Trombose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...